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Abstract—A Galerkin scheme is developed to study the three-dimensional natural convection in a fluid-

saturated porous annulus heated from the inner surface. In addition to the two-dimensional multiple

solutions reported in the authors’ previous paper, three-dimensional solutions are obtained ; the secondary

cells, with streaklines of the three-dimensionally closed co-axial double helices, are found extending along

the axial direction in the top region of the annulus. This brings about an increased maximum local heat

transfer coefficient, which consequently enhances overall heat transfer compared with that for the two-
dimensional unicellular flow.

1. INTRODUCTION

IN A PREVIOUS paper [1] the authors developed a two-
dimensional (2-D) Galerkin scheme and investigated
natural convection in a horizontal porous annulus
and its related bifurcation phenomena. It was pointed
out that besides solutions of the simple unicellular
flows there exists more than one branching solution
at higher Ra which yields overall heat transfer rates
coincident better with experimental data. However,
experimental measurements by Caltagirone [2] of the
temperatures along a generatrix at the top of the annu-
lus revealed a wave-like distribution, indicating the
existence of a three-dimensional (3-D) cellular flow
extending in the axial direction. He reported that the
2-D flow existed only at low Ra. Takata’s measure-
ment [3], though with a limited length in the axial
direction, also confirmed the claim. Despite this three-
dimensionality of the flow in the upper part of the
annulus, however, numerical works in the literature
[4-12] have all treated the problem with 2-D models,
and no results have been presented to interpret the
structure of this flow pattern. Caltagirone [2]
described a program based on the finite-element
method but could neither obtain convergent solutions
nor carry out enough time steps to eliminate the influ-
ence of the possible strong initial perturbations ; this
was attributed to the capacity of computers at that
time. In ref. [13] the authors developed a numerical
scheme based on the finite-difference (SOR) method

and obtained 3-D results in an inclined annulus with
finite axial length. The formation of that flow pattern,
however, is due to the presence of the component of
the gravitational force in the axial direction, and it
is therefore different from the flows in a horizontal
annulus, where no such force exists and 3-D flow is
thought to be induced by the instability due to a
reverse temperature gradient at the top of the annulus
asin the case of the Benard problem. Only 2-D results
were obtained for the horizontal case [13]. As will be
discussed later, this appears to be due to the fact that
the use of the converged solutions obtained at lower
Ra as initial conditions minimized an axial per-
turbation inherently produced by an SOR scheme,
and thus prevented the flow from becoming 3-D.

In the present work, a 3-D Galerkin scheme is
developed. The temperature as well as the components
of the vector potential of velocity are expanded with
a series of orthogonal eigenfunctions similar to those
the authors developed in the 2-D scheme [1]. The
scalar product is adopted to form residual equations
in terms of the components of the vector potential,
though the vector product has usually been adopted
in 3-D Galerkin schemes dealing with the same prob-
lems of natural convection in enclosures [17, 18]. Dis-
cussions are made to show that the latter is just a
special case of the former and the unconditional use
of the vector product in Galerkin procedures may lead
to significant errors.

In the same way as in the authors’ previous work
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a InR/n

amplitude of the mode (i,7,k) of ¢,

amplitude of the mode (i,/,k) of ¥,

amplitude of the mode (i,j,k) of ¢,

C  constants defined in Appendix B

D, Dirichelet function

g gravitational acceleration

ll[ﬁ(ﬁn“ fc)]

L dimensionless axial width of three-
dimensional spiral flow, scaled by the
inner radius

N, N, N, cutoff numbers

Nu  local Nusselt number

Nu average Nusselt number

P pressure

P radius distance

¥ coordinate in radius direction, scaled by
Fi in

R ratio of the outer to the inner radius

Res residual in scalar form, equation (20)

Res residual in vector form, equation (22)

Rayleigh number, gBir.,(Tin—T,)/%eqv
T  temperature

T, amplitude of the mode (i,j,k) of the
dimensionless temperature 6

t time

v velocity vector

V..V, V. velocity components in the
direction of the suffix

z coordinate along the axis of the annulus,
scaled by #,,.

Greek symbols
o, equivalent thermal diffusivity of the
saturated porous medium
B thermal expansion coefficient of the fluid
'] Kronecker delta

NOMENCLATURE

©  dimensionless temperature,
(T-T)/(Tn—T1,)

0 dimensionless temperature defined by
@®@—(1—~Inr/InR)

K permeability

A direction vector [ —cos ¢, sin ¢, 0]

¥ kinematic viscosity of the fluid

¢  angular coordinate measured from
downward vertical axis

v vector potential of velocity

Y.y, . components of vector potential in
the direction of the suffix.

Subscripts
in  inner
o outer

(LJ,K); (i,7,k); (I,m,n) modes of dimen-
sionless temperature, velocity or its
vector potential

x mode {7, |m—jl,In—k|}

B mode (i |/l Ik]).

Other symbols

010 3
or’ r 8¢’ oz

1¢ ¢ 180 &

ror et rag o
Yy, Y. when/iseven; when /is odd
H-i(:Ll)dd i=13,... i=2.4,...
y Y. whenmiseven; whenmis odd

j=2.4.. =13,

i+m=even

{ > volume integration over the annular space,

JR r JL dr(rd¢)dz.

[1], several initial conditions, including uniform tem-
perature distributions or pure conduction solutions
with and without perturbations, are adopted and their
effects on determining final solutions are discussed. A
randomly distributed perturbation is also introduced
to obtain information about which of the branching
solutions is preferred. The structure of the 3-D flow
is clarified and its influence on the local and overall
heat transfer examined, which is expected to cast a
new light on the problem.

2. ANALYSES

2.1. Formulation of the problem

Consider a horizontal porous layer bounded by
cylinders with its inner surface heated. The numerical
model is shown in Fig. 1, where the gap between

the cylinders is filled with a fluid-saturated porous
medium. The inner and the outer surface, of dimen-
sionless radii 1 and R, are maintained at different
uniform dimensionless temperatures 1 and 0, respec-
tively. The gravitational force on the system exerts
vertically downward. Cylindrical coordinates are util-
ized, where ¢ is measured from the down vertical, r
from the axis and z along the axis. Due to the sym-
metry of the boundary conditions and the gravi-
tational force, the flow in the annulus is assumed to
be symmetrical about the vertical symmetry plane.
Since no external force exerts in the z-direction, the
possible 3-D steady-state flows should take the cellu-
lar form with symmetry planes normal to the axis,
planes I and II as shown in Fig. 1. It should be noted
that in the Darcy problem, the boundary conditions at
these planes are the same as the symmetry conditions.
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Fi1G. 1. Flow geometry and coordinate system.

The governing equations, the conservation of mass,
Darcy’s law and the conservation of energy, are given
in equations (1)~(3), which are the same as we used
in the previous paper [1]

Vv=0 )
VP—RaiA®+RaGai+v=0 2
—(v'V)O+ V0 = 00/t (€))

where, 4 = [ —cos ¢, sin ¢, 0] indicates the unit vector
in the down vertical direction. For convenience, we
replace @ by 8 = ® —(1 —Inr/In R). Thus equations
(2) and (3) are rewritten as

cos¢/In R |
* 0 _ v =
vp* + 0 A0 + Ra" 0 “
—-(v-V)o + + V20 = 96/t )

where P* = P/Ra—Garcos ¢p+r(l —Inr/ln R)cos ¢.
The boundary conditions to be satisfied are

V,=0=0, at r=1,R
Vy=00/0¢ =0, at¢ =0,n 6)
V,=06/0z=0, at z=0,L.

The equation of continuity is satisfied identically by
introducing the vector potential

v=Vxy. )]

Taking the curl of the equation of Darcy’s law, we
eliminate the pressure term and obtain the following
equations:

Vzl//r - [b z2 al//

r2

20
Vz'l/&ﬁ - [ﬁz‘ﬁ ) )

r r

] Rasin ¢ %g ®)

] Rac osd)a )

Vi,= —Ra (s1n¢ + cos¢p— SZ) (10)

The corresponding boundary conditions from Hira-
saki and Hellums [14] are

12wy =va=v.=6=0, atr=1R
v, 0
W""J’z—a(p

oy, 00
!Pr=~//¢=%/'z—=—5;=, at z=0,L.

¥, = =0, at¢p=0,n (1)

2.2. Galerkin scheme

The Galerkin method has been described in general
cases in refs. [15, 16]. In the present study, the tem-
perature and the three components of the vector
potential are expanded as follows:

~ 1 i ... k=
Y, = ElA,-jknﬁ,U_k = ZIA,-jk;cos (Elnr> sin j¢ smfz
12

~ 1. (i . km
Vo = LBy, = ZzBijk;sm <;ln r)cos;q& sin—-z
13)

kn

V,=X 3$Cu., = Z;C . sin —lnr sm]¢cos—L—z
(14)

1 i k
= 2Tl = Z4T,jk;sin <2ln r)cosj¢ cos-gz

(15)
where, ¢~ denotes a truncated series, and
NN N,
L=Y=YY ¥; 5=Y;
o1y =0 j=1 k=1 101
110 100

These trial functions were formed from an extension
of the 2-D ones developed in the previous work [1];
they are orthogonal in the annular space and satisfy
the boundary conditions. Identically corresponding
to equations (12)—(14) are the velocity expansions that
satisfy the boundary conditions and the continuity
equation :

. krn
Vr = Z (jcijk - TBijk>

100

1. (i . kn
x sin <;ln r)cos;q&cosfz {an

.~ kn i
V, = — Ay ——Cy,
¢ on(L * a }k)

1 i . km
x;cos(;lnr)sm]q&cosfz (18)
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. i .
V.= Z (‘Bijk ‘]Aijk>
001 \&

X rizcos <éln r) cos j¢ sin kfn z. (19)
The Galerkin method is based on the idea that a given
function (here residual) must be zero everywhere in a
given space if it is normal to every term of a complete
series (here trial functions) in the space. The pro-
cedure is practically conducted by multiplying the
residual with the trial functions and then integrating
over the space. In the published works [17, 18] dealing
with 3-D natural convection in horizontal or inclined
porous boxes, the vector product using the velocity
vector has been adopted to form the residual equation.
In the present study, scalar products using com-
ponents of vector potential are used. Discussions are
made on differences and relations between the two
procedures in the following and in the Appendices.

(a) Residual equations by scalar product (using
¥, ¥4 Y. and 0). Inserting the truncated series of
equations (12)-(15) into equation (8), we obtain an
expression for the scalar residual

- j, 20§ il
Res, = V3, — l:% + 2 (%;} - Rasin¢~a—z.

20

The Galerkin procedure gives a set of simultaneous
equations

(Res, ¢, >=0

[=0,N; m=LN;; n=1N. (1)

where the angular brackets mean integration over
the annular space. The other two sets of equations for
Res, and Res, are obtained in the same way. Thus,
we have three sets of equations for the unknowns 4,
By, and Cy.

(b) Residual equations by vector product (using v—
formulation). Inserting a truncated series ¥ directly
into the equation of Darcy’s law, equation (4), we
have a residual in vector form

cos¢/InR

= * 0 — g — -.
Res = VP* + 0 A9+ Rav 22)
The corresponding set of residual equations is
(Res v, > =0
I=1L,N; m=0,N,; n=0,N.. (23)

Since equation (23) produces only one set of residual
equations, the vector trial function must have the
following form:

v,
itk
V=2 EuvVy =Y Ey | Vo, |

Zijk

249

One choice is to let A4, = By, = Cy, = E in equa-
tions (17)-(19). However, we consider herein the fol-
lowing trial functions which are very close to those
usually adopted in the literature [17, 18] :

V=YE,

er o\ (] . kn ]
7z tJ rsm anr cos1¢cost

i\1 i k
);cos( lnr>sinjd>cos—nz .

L

kn (i1 i1 ok
L 7\ )zcos| Flnr 0051¢51an

(25)

It is a combination of two sets of trial functions, each
involving a pair of velocity components and satisfying
the boundary conditions and the continuity equation
in corresponding 2-D (r—¢ or r-z) planes.

We can easily find that equation (25) is a special
case of equations (17)—(19) under the conditions

_ (a . km
Apje = kD 47 []By'k 5 Cijk] (26)

which yields E;; in equation (24) as

1 km .
(kn/L)2+ﬁ[TB"’*"’C"*} @n

Now, it is found that this condition has an equi-
valent

Ey; =

- — 0 (28)
which is not the case in the present problem unless the
flow pattern is two-dimensional. As will be shown
later, trial functions (25) cannot produce correct solu-
tions for 3-D flow. In Appendix A, a further dis-
cussion is also made for the case of an inclined box,
which leads to the conclusion that this formulation is
correct only in the horizontal case or in the case of 2-
D flow.

2.3. Solution procedure

Evaluating every term of the inner products in the
residual equation (21), which corresponds to equation
(8), we obtain equations for the amplitudes of the
modes, A,,,,, Biyms Cimn- Those corresponding to equa-
tions (9) and (10) are also obtained in the same way.
They are as follows:

N,

N, ;
C A C Bimn
z 1 Aimn + —Zl 2

i=0 i=

Ni
= Z Cil(1 46, ) Tim 1= Toms 1
+7=0dd

I=0,N; m=1N;; n=1N, (29)
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N, N N
i;C4B.,,.,.+i=ZO 5 imn . j;l 6y
j+m=even

I=1,N; m=0,N;; n=LN, (30)
N, N
2 C7C,'mn = Z CB[(I+5ml)Ti,m—l,n_Ti,m+l.n]
=1 i add

+Col(m+8,) T 1 +MT 1,1+ Cro
I=1,N;; m=1N;; n=0,N,.. (31)

Similarly, from the energy equation we have

d N nm
Cog; T =2 [an (mclmn _TBl‘mn) + C,;T.-,,,,,]

i=1

N N,
Z kz [C14Co+C5B,+C 164,17,

J
0 Jj=
0 m~N, n—N,

I=1,N; m=0,N;; n=0,N, (32)

where a = (I,|m—j|, |[n—k|) and B = (i,|jl, |k}), and
the coefficient functions appearing in these equations,
i.e. C\—C,, are given in Appendix B. Equations (29)—
(32), derived from the initial value problem (8)-(10)
and (5), constitute a first-order non-linear ordinary
differential system and are solved as follows. First,
for a set of initial values of T,,,, equations (29)-(31)
are iteratively solved to determine the values of A4,,,,
B, and C,,,,; they are then used in integrating equa-
tion (32) to obtain T,,,’s for the new time step. As can
be found in Appendix B, the coefficient for 4,,,, i.c.
C\(i=1), is much larger than the others on the
left-hand side of equation (29), and the similar feature
is also found in equations (30) and (31). As this makes
the solutions converge very fast, two or three iter-
ations are actually enough to obtain converged solu-
tions with a maximum error of 0.001.

The time-marching integration is carried out with
the rational Runge-Kutta method developed by
Wambecq [19] as an explicit method for solving stiff
ordinary differential equations, which is stable at
much larger time intervals than the conventional
Runge-Kutta method. The effectiveness of this
method in integrating equations for natural con-
vection problems was also confirmed in our previous
work [1]. The radius ratio R is set to 2.0. The value
of 0.94 is chosen as the cell width L for convenience
of comparing with the experimental data available [2].
The time intervals used are between 0.003 and 0.01.
Time-marching is continued until the relative change
in the average Nusselt number becomes less than
0.0001. The CPU time for an average run with
N;xN;xN,=10x13x5 is about 20 min with an
FACOM-VP100 computer.

M=

<+

[N]

i
1

3. RESULTS AND DISCUSSION

3.1. Comparison between the two Galerkin procedures
To form the residual equations of Darcy’s law, the
above-mentioned two Galerkin procedures using
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either the scalar or the vector product are formulated
and coded. The procedure using the scalar product,
as given in equation (21), is proved to be com-
putationally effective and to produce 3-D results
which coincide with those obtained by a finite-differ-
ence method [13]. However, the procedure using the
vector product, equation (23), fails to produce con-
vergent 3-D results. When perturbations or converged
solutions obtained from other methods are taken as
initial values, the resulting solutions by the procedure
either become two-dimensional or diverge fast. The
validities of the two sets of trial functions, equations
(12)(14) (or identically equations (17)-(19)), and
(25), are therefore examined by expanding a con-
verged solution for a single cell of 3-D spiral flow
which is obtained by a finite-difference method with
a mesh grid of 21 x 51 x 21 (rx ¢ x z). If a series of
trial functions is a complete set, the solution expanded
with it approaches a real solution with increasing trun-
cating number of the expansion. Thus the following
average residual should approach zero

Res, = <(V x7)¢—Racos¢Z—z> (33)

where ¥ and @ are truncated series for either of the
two expansions, and equation (33) is identically the
same as the averaged residual of equation (9). Here
Res, is chosen because y, gives the cellular convection
in the r—z plane at the top of the annulus and is
most sensitive to trial functions, and also because both
cos ¢ and 06/0z have large values at the top, where 3-
D flow occurs, so that {(Racos ¢ 60/0z), which takes
the same value for the two procedures, can be used as
the scale factor for the residual. This avoided numeri-
cal integrating of the absolute value of the term in
angular brackets, which would take much computer
time for large cutoff numbers. In Fig. 2, the results
are compared where N is set equal to N;= N, = N,
for convenience. It is found that the series using trial
functions for the scalar product, equations (12)-(14)
or identically equations (17)-(19), gives a converged
solution, whereas the series using trial functions for
vector product (25) gives a diverged solution with
increasing N. This indicates that the use of an incom-
plete series of trial functions may yield solutions that
do not converge to the differential equation we
attempt to solve.

3.2. Multiple solutions corresponding to different initial
conditions

As described and discussed in our previous work
dealing with a 2-D problem, the initial condition
sometimes plays a determining role in the problem
involving instability. It should be noted, however, that
there is no general way for choosing initial conditions,
particularly when stability is involved. Instability
expected to occur in the present problem is mainly
due to a reverse temperature gradient at the top of the
annulus, as is similar to the case of the well-known
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Fi1G. 2. Residuals for two Galerkin procedures : (a} by incom-

plete series equation (25); (b) by complete series equations

(17)-(19).

1213

Benard problem. In such a problem, an initial per-
turbation is necessary since the unstable change of
flow patterns as well as the onset of convection are
usually caused by small perturbations in nature; the
use of the conduction state or a uniform temperature
distribution as initial conditions may prevent these
solutions from being obtained. The number of steady-
state multiple solutions at a given Ra is an intrinsic
feature of the problem and should be independent of
initial conditions. However, there is no general
method at present to determine the number in such a
complicated non-linear problem; it should be
analyzed case by case, and empirically in most cases.
The simplicity of the geometric and boundary con-
ditions in the present problem allow us to assume
that the possible branching solutions take the form of
secondary {multiple) cell patterns extending at the top
region of the annulus in either circumferential or axial
directions. The former involves reported 2-D bran-
ching solutions of multicellular flow {1] ; and the latter
involves a 3-D branching solution of a spiral flow
which is treated in the present work.

Y. F. Rao et al.

Table 1 lists the initial conditions adopted. Since
the velocity is set to zero, these conditions do not
conflict with any of the governing equations. Types 1,
2 and 3 are 2-D ones corresponding to the conduction
state or the uniform temperature distribution with and
without 2-ID oriented perturbations; they produce 2-
D uni-, bi-, and tricellular flows as shown in Fig. 3.
Type 4 corresponds to oriented 3-D perturbations,
where (—1)'T),, are given values with the same sign
so that a wavy distribution along the axial direction
is formed at the top of the annulus (¢ = n). It gen-
erates 3-D flows the structures of which will be dis-
cussed later. In Table 2, dominant modes for 2- and
3-D branching solutions are listed in the order of their
absolute values. Here, by ‘mode (i, /, k)" we mean a
harmonic component corresponding to one term in
the Galerkin expansion; it specifies a flow pattern
satisfying boundary conditions with wave numbers
i,j,k in the r-, ¢- and z-direction, respectively. We
can find that among the branching solutions, common
modes exist describing the main flow circulation which
is nearly two-dimensional even for 3-D spiral flow;
they are (1, 1,0), (2,0,0), (271,0), (1, 2,0), etc. Special
modes, underlined in the table, also appear cor-
responding to different secondary flows occurring at
the top region of the annulus. In the case of 3-D flow,
modes (1, /, 1) become dominant. It is found that the
value of (—1Y'T;, varies very regularly and has the
same sign as shown in Fig. 4. This contributes to form
a temperature distribution corresponding to a 3-D
spiral flow.

3.3. Stability of the multiple solutions

Initial condition Type 5 was also introduced to find
which of the branching solutions would be preferred
under random initial conditions. When the amplitude
of the random perturbation was small, the 2-D uni-
cellular flow became dominant ; while when the ampli-
tude was large enough, above 0.001-0.02 varying with
Ra, the 3-D flow appeared. Thus, the 2-D unicellular
and the 3-D spiral flows seem to be more apt to
become dominant than the other 2-D multicellular
flows.

Table 1. Various initial conditions

Type 1 Type 2 Type 3 Type 4
for 2-D unicellular  for 2-D bicellular  for 2-D tricellular  for 3-D spiral flow Type 5
(a) allT,; =0 all T, =0 all T =0 all T, =0 Random
except except except distributions of
Ti0o=2¢ Tiso=2 Tio1 = —¢ perturbations
Tiso= —¢ Tipp= —¢ Tin=¢ addingto 8 =0
Tiso=¢ Tigp=¢ Ty = —¢
190 = —8 Ty =¢
, 2i 2a[(— 1)'R~1] - .
T 5 = 1
) adding T4, @17 { + @+ ) to the above initial conditions

e(>0) = 0.001-0.1: (a) conditions corresponding to pure or perturbed conduction state ; (b} conditions
corresponding to pure or perturbed uniform temperature distribution.
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unicellular

F1G. 3. Two-dimensional branching solutions which are the same as those obtained in the previous work

bicellular

tricellular

Table 2. Dominant modes of multiple solutions for Ra = 120

2-D unicellular 2-D bicellular

2-D tricellular 3-D spiral flow

Mode T Mode T; Mode T, Mode T,

11,0 —0.659 11,0 —0.508 1,1,0 —0.487 1,0 —~0.561

2,0,0 —0.165 1.3.0 0.191 1,3,0 0.170 LI 0.173

2,1,0 0.141 2,0,0 —0.185 2,0,0 —0.166 2,0,0 —0.161

1,2,0 0.134 140 —0.173 2,1,0 0.118 2,1,0 0.133

3,1,0 ~0.103 2,1,0 0.161 1,70 —0.115 121 —0.128

22,0 —0.081 1,50 0.128 1.8.0 0.113 3,1,0 —0.107

1,0,0 —0.061 3,1,0 —0.110 1,2,0 —0.112 1,0,0 —0.104

1,0,0 —0.109 1,0,0 —-0.108 10,1 —0.096

1,2,0 —0.085 3,1,0 —0.092 131 0.076

1,6,0 —0.081 1,90 —0.090 2,2,0 -0.070
T Tt The bifurcation phenomenon discussed herein does
02p " not result from the use of the Galerkin scheme; the
same multiple solutions can be obtained when similar
_ initial perturbations are introduced to the scheme
ot _ (described in ref. {13]) based on the finite-difference
- method. In previous experiments [2, 3], the flow was
- reported to be 2-D at lower Ra and 3-D at higher Ra.
0.0 O - OO Nothing was reported related to the fact that more
W than one flow pattern exists at a given Ra. However,
these experiments were mainly aimed at finding over-
B e T T B e m T all heat transfer rates and no attention was paid to
) the possibility of bifurcation. The authors therefore
(1. 1) believe that further experimental work is needed to
Fic. 4. Dominant modes of temperature (1,j,1) for find whether the same bifurcation can be observed in

Ra =150, L = 0.94.

In previous work using the finite-difference method
[13], 3-D results could not be obtained. This seems to
be due to the fact that the use of converged solutions
at a slightly lower Ra as initial conditions reduces the
numerical perturbation of an artificial, axial tem-
perature gradient, which is inherently introduced from
the Gauss—Seidel iteration in the SOR method (see
Appendix C). It is proved that unless their amplitudes
are large enough, perturbations, either oriented or
random, cannot result in branching solutions other
than the unicellular one. This indicates that the tran-
sition of flow patterns from the basic 2-D unicellular
to other branching solutions seems to be nonlinear
and cannot be treated with the linear theory.

the laboratory.

3.4. Structure of the 3-D spiral flow

Figure 5 shows the temperature variation along a
generatrix at the top of the annulus. In this figure, the
numerical result obtained with the Galerkin method
is extended by symmetry and periodicity to involve
more than one cell and compared with the measure-
ment by Caltagirone [2]; agreement is qualitatively
satisfactory. To confirm the validity of the numerical
result further, it is also compared with that obtained
by the finite-difference method, and a very good agree-
ment is obtained. The average Nusselt numbers at
the inner and outer surfaces deviate from each other
by less than 1%.

The flow field and isothermal lines on several r-z
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Gaterkin
==~ FOM .
0.2 . .
@ Exp. by Caltagirone
1 i i
0 i i 1
J— 4

FiG. 5. Temperature distribution along a generatrix at the
top with r = 1.5, Ra = 150, L = 0.94.

planes are shown in Fig. 6, where it is shown that the
flow at the top region is very similar to a couple of
Benard cells in a horizontal rectangular channel
heated from below. This is due to the strong inverse
temperature gradient there. These axially extending
cellular flows become weaker at lower r~z planes, and
at ¢ = 90° they tend to be difficult to identify. In Fig,
7, isotherms, flow fields and streaklines are plotted for
two special symmetry planes, planes I and II, where
the streaklines are planar. In plane 1, the secondary
cell adds a down-forward flow to the main circulation
at the top of the annulus, and the temperature dis-
tribution is very like that for 2-D bicellular flow. It is
found that velocities are nearly zero at two places, the
top region near the inner cylinder and the center of
the main circulation; and the streaklines show an
interesting pattern: all of them end at the above two
places. The center of the main circulation, located at
(1.45, 106°), looks like a sink, but not a real one since
the flow is three-dimensional. In plane II the isotherms
and flow fields are very like those for the simple 2-D
unicellular flow since the secondary flow is upforward
at the top of the annulus, which is the same as the main
circulation. The corresponding streaklines, however,
show an interesting toroidal path starting at a point
nearly the same as the ‘sink’ in plane I and spiraling
towards the outer cylinder. It looks like a source. The
streaklines in these symmetry planes will be helpful in
our understanding of the 3-D spiral flow between
them.

Figures 8(a)—(c) give streaklines of the 3-D spiral
flow, which were obtained by three-dimensionally
integrating the velocity field from a given starting
point. As shown in Fig. 8(a), starting from a point at
the top region, the streakline forms a co-axial double-
helix which is similar to that observed in an inclined
rectangular box [20]. While starting from near the
‘sink’ in plane I, the streakline spirals towards plane
IT along the axis linking the ‘sink’ and the ‘source’,
which can also be considered as the axis of the main
circulating flow. As it gets closer to plane II, it takes
a toroidal path similar to that shown in Fig. 7 and
will finally reach the outer layer directly affected by
the double-helix cell at the top and then spirals back
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FiG. 7. Isotherms, flow fields and streaklines in symmetry
planes I and II': Rae = 100, L = 0.94. Open squares and closed
circles denote starting and end points, respectively.

towards plane 1. This is shown in Fig. 8(b), where we
can find that the streakline returns to within a very
small distance from the starting point after spiraling
several circuits of the toroidal path as numbered in
order. The history of a toroidal circuit can also be
found easily from the side view ; the circuit generally
becomes closer and closer to the bottom except the
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FiG. 8(a). Streaklines starting at points {(r,¢,2) =
(1.06, 174°,0.20) and (1.45,110°,0.10), Re = 100, L = 0.94.

F1G. 8(b). Streakline starting at (1.45,90°,0.15).

last one. Since the last toroidal circuit, No. 14, is in
the very vicinity of plane I, it spirals towards the
‘sink’—‘source’ axis along a path that can be found in
Fig. 7. In Fig. 8(c), the starting point is chosen further
from the axis ; this results in a closed streakline with
the same feature as that in Fig. 8(b), except that it
does not get very close to plane II and is located in
the remaining space of the streaklines in Figs. 8(a)
and (b).

F1G. 8(c). Streakline starting at (1.10,90°,0.10).

3.5. Influence of the flow pattern on heat transfer

In Fig. 9 local Nusselt numbers are plotted for 3-D
spiral flows. It was found that the maximum Nusselt
numbers in the upper part of the annulus are greatly
increased owing to the 3-D cells extending along the
axial direction. The average Nusselt numbers,
however, are less affected since the 3-D flow occurs in
a limited region at the top of the annulus. For the
same reason, only a small difference can be found
between transient results for 2- and 3-D flows, as
shown in Fig. 10.

In Fig. 11, steady-state Nusselt numbers are plotted
against Ra for 2- and 3-D branching solutions. Two-
dimensional multicellular flows, the bi- and tricellular
ones, agree better with experimental data, but they
proved less preferred than the other branching solu-
tions—the 3-D spiral and 2-D unicellular flows,
Although the experimental data available are also
insufficient, the deviation from experimental data at
higher Ra is thought to be possibly caused by the
physical model using Darcy’s law and the assumption
of the uniform medium. Kaviany [21] examined the
effect of non-Darcy terms, such as inertia and
diffusion, but showed that those terms could not
increase overall heat transfer rates numerically cal-
culated. Muralidhar and Kulaki [11] examined the
effect of a non-uniform distribution of porosity, show-
ing that the ‘channeling effect’ caused by a high
porosity near the wall would greatly increase the heat
transfer. Despite that these problems remain,
however, we believe that the 3-D results obtained in
the present work reveal essential features and they are
thus applicable even when the model is modified.
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F1G. 9. Local Nusselt numbers at the inner and outer surfaces, Ra = 100, L = 0.94,

el R I .

F1a. 10. Time variation of average Nusselt numbers for 2-
and 3-D flows: Ra = 100.
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FiG. 11. Average Nusseit numbers for 2- and 3-D flows.

4. CONCLUDING REMARKS

Numerical results have been presented for the 3-D
natural convection in a horizontal porous annulus
heated from the inner surface. Conclusions drawn are
summarized as follows.

(1) A Galerkin scheme using components of vector
potential has been developed and compared with the
Galerkin scheme using velocity vector ; the latter was
proved unsuitable.

(2) Multiple solutions have been obtained cor-
responding to initial perturbations. Results from ran-
dom initial conditions indicate that the 2-D unicellular

and the 3-D spiral flows seem more apt to become
dominant than the other 2-D multicellular flows. It
was found that 3-D flows cannot be obtained unless
the initial perturbation is strong enough.

(3) The structure of a 3-D spiral flow has been
clarified. At the upper part of the annulus, there exist
secondary flows with closed streaklines of co-axial
double helices as observed in inclined rectangular
boxes.

(4) Compared with the 2-D unicellular flow, the 3-
D spiral flow produces a higher maximum local heat
transfer rate in the top region of the annulus, which
enhances the overall heat transfer.
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APPENDIX A

Simply but now losing generality for comparing with refs.
[17, 18], we consider natural convection in an inclined porous
cubic box the heated surface of which is at an angle ¢, to
the horizontal plane. The equation of Darcy’s law is written
as

sin g,

VP4+v=PRa@®| 0
cos ¢y

(A1

HMT 31:4-C
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The corresponding vector potentials are
¥, =Y by, cosinxsin jrysinknz

Y, = Y cy sininx cos juy sinknz (A2)

¥, =Y ag sininxsin jny cos knz.
Since v = V x § we have
V. = ¥ n(jag —key) sininx cos jry cos knz

V, = Y atkb, —iay)cosinxsinjnycosknz (A3

V, =Y alicy —jbyu ycosinx cos jmy sinknz.
In refs. [17, 18], expansions were adopted as follows:

v,

Xk

V= Ze"i* V.V.jk
v,

Zfik
ikn® sin inx cos jmy cos knz
Jjkn? cos inx sinjny cosknz |

2 2y 2 f . : (A4)
— (i* +j*)n? cos inx cos jaysin knz

=Y eu

We can easily find that equation (A4) is a special case of
equation (A3) under the condition

k. .
Ay = m (byi +jep) (AS)
which gives e;,’s in equation (A4) as
. .
Epp = ;2‘_‘*_? (Jbijk — Wk ). (A6)
This condition has a physical meaning as
Q =(Vxv), =0. (A7)

However, by taking the rotation of equation (A1), we have

. 00

(Vxv), =sind, Ragy—

the right-hand side of which cannot be zero in the problem
of 3-D convection in the inclined case, i.e. ¢y #0 and
00/dy # 0. From the results shown in Section 3, it is inferred
that using this incomplete expansion series will prevent the
results from converging with increasing truncating number.

(A8)

APPENDIX B
Constants appearing in equations (29)-(32)

an’nt

c = %I:[azmz(4a2+i2+12)+2i212]X3+5,»,T(1 —81)
(B1)
Cy = — %L&i(‘%az-f-i’—lz)X; (B2)
nnlai

C,= —Ra—--~————4(i2~12) (B3)

. i2 2) 2 122

C,= 'i-lIL 2 ;5+m a+aat+ -t 1 X,

an’*n?®

+ I }(1-{-5,,,0) (B4)

T

Ci=—3

mLal(4a® +1* - i) X, (B5)
m+1 m—1

m+1)7+7 (m—l}z—jz] (B6)

2
Ce= —Ra%na[
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i1

3 2 ll
C, = [_ %n2a2i1X4+5,-,§La (;5 + m2>J(1 +8,0)

Y. F. Rao eral

1 i+
-]

= - B
(B7) X = B DR+ (-] (B21)
illw [I_RZ(_I)i+I]
Cy = —Ra—5——7=-(1+9, BS) =
8 4(12_12)( 0) ( X4 [4a2+(1+i)2][4a2+(l—i)2] (B22)
~ é B9 ! i+
Cy = RaycLa(l+ 0) (B9 1—§(—1)'+
X. = B23
c R IL[l-R(—I)’](s 5 (B10) P @+ G+D A+ (-1 (B23)
10 = KA——5——5—""0p10p0
2a*+1%) Xo= "711(0[(1;’2 — X)) (4a? + 12 431 +3) — 6li(X, + X,)]
2
C1y = g La(l +3,0)(1+3,0) (B11) (B24)
X; = =282 1X,[I(X,— X)) —i(X,+ X,)]. (B25)
L .
CIZ =Ela’(l+5m0)(l+5n0)X5 (Blz) APPENDIX C
- It is easy to see that, if the term 06/0z on the right-hand
Ci3= l:— iLil(l 142a’m*+2a* + )X, side of equations (8) and (9) is initially set to zero as it should
be under 2-D initial conditions, the results can only be two-
2 a dimensional. In the previous work [13}], however, the axial
— 3y ﬂ’__"_] (L+3,,0)(1+6,,) (B13) perturbation was considered to exist due to the Gauss—Seidel
8L iteration in the SOR method, in which discretization for the
term was conducted as
Ciu= — L (m—j)X, + tn_IX7 00 0(r,¢,z+Az)" —0(r, ¢, 2~ Az)"*!
16 a o= (C1)
0z 2Az
X (1+84)(1+00.)(14+8,4)D,_; (Bl4) where n stands for step number of iteration and Az grid size
in the axial direction. In equation (C1), we used values of
n? nl temperatures at different iteration steps so that we introduced
Cis = 16 (n—k)X, + ;{X 7 an artificial temperature gradient in the axial direction which
would cause the onset of 3-D flow. However, the numerical
X (14+00)(1+8,, )1 +0x)D,_;  (B15) gradient is small if the increase of Ra is small (although a
s change of the acceleration factor in the SOR method plays
_n . the same role). The reason that the 3-D results in the hori-
Cie = 16 X () —mk)(1+00)(1 +00) Dy Dr—i (BIE) zontal case could not be obtained in previous work [13] seem
to be that the perturbation was suppressed since Ra was
where increased step by step as 0-25-50-100. Increasing Ra directly
1 0) from 0 to 100 we obtained 3-D results. It is worth noting
0 Ex > 0) that simple iteration using
D, = X = (B17) " A
—1 (x<0) Q(z _ 0(r, p,z+A2)"—0(r, ¢, z— Az) 2
0z 2Az
stands for the Dirichelet function, and will prevent the artificial gradient from appearing, and more-
over, the round-off error by a computer does not produce
1 it such perturbations since a computer truncates the calculation
Xo=|1- T{z(" 1) (B18)  in every r—¢—here z+Az and z—Az—planes exactly the
same way. In this case, initial perturbations must be intro-
X, = {da* +(+1+0)2][4a’+(—1—i)?]} " (B19) duced to obtain branching solutions which are observed
in the experiment. This was also confirmed in the case of
X, = {[da*+(+1-)4a’+({—1+i)]}" (B20) rectangular geometry.

UNE ETUDE NUMERIQUE DE LA CONVECTION NATURELLE
TRIDIMENSIONNELLE DANS UN ANNEAU POREUX HORIZONTAL PAR LA
METHODE DE GALERKIN

Résumé—Un schéma de Galerkin est développé pour étudier la convection naturelle tridimensionnelle

dans un espace annulaire saturé de fluide et chauffé par la surface interne. En supplément des solutions

bidimensionnelles données par 'auteur dans un texte antérieur, on obtient des solutions tridimensionnelles;

des celtules secondaires, avec des lignes proches des hélices doubles coaxiales, sont trouvées s’étendre le

long de la direction axiale dans la région supérieure de I’espace annulaire. Ceci conduit & un accroissement

du maximum du coefficient local de transfert de chaleur, ce qui améliore le transfert global par rapport 4
celui d’un écoulement bidimensionnel unicellulaire.
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EINE NUMERISCHE UNTERSUCHUNG DER DREIDIMENSIONALEN
NATURLICHEN KONVEKTION IN EINEM HORIZONTALEN PORUSEN RING
MIT DER GALERKIN-METHODE

Zusammenfassung—Fine Galerkin-Methode wird entwickelt, um die dreidimensionale natiirliche Kon-
vektion in einem fluidgesiittigten pordsen Ring, der an der inneren Fldche beheizt wird, zu untersuchen.
Zusitzlich zu den zweidimensionalen Mehrfachlésungen, iiber die im vorhergehenden Artikel des Autors
berichtet worden ist, erhilt man dreidimensionale Losungen. Es wurde herausgefunden, daB sich im oberen
Teil des Rings in axialer Richtung Sekundirstromungszellen ausbilden. Die Streichlinien haben die Form
einer dreidimensionalen geschlossenen koaxialen Doppel-Helix. Dies bewirkt einen erhGhten maximalen
ortlichen Wirmeiibergangskoeflizienten, der folglich den gesamten Wirmeiibergangskoeffizienten gegen-
tiber demjenigen fiir die zweidimensional einzellige Stromung verbessert.

MPUMEHEHHME METOJA TAJIEPKHHA 11 YACJIEHHOI'O UCCJIEAOBAHUA
TPEXMEPHON ECTECTBEHHON KOHBEKLIMM B TOPM30HTAJIBHOM IMOPHCTOM
KOJIBLIEBOM KAHAIJIE

Anmoramms—Pa3paborana cxema M1s uccnenoBaHus MetoaoM IanepkMHa TpexMepHOW ectecTBeHHON
KOHBCKIIHH B HACBHILICHHOM XHIKOCTbIO MOPHCTOM KOJIBUEBOM KaHANe C HATrpeBacMol BHYTPEHHelH
noBepXHOCTHI0. [ToMHMO AByMEpHBIX pelleHHi, KoTophle OLUIH NpEeacTaB/ieHH aaBTOPAMH B NpeIblRy-
wie#t pabote, mosydeHnl TpexMepHble peiieHns. HaliieHo, YTO BTOpHYHbIE AYEHKH, KOTOPHIE HMEIOT BHA
3aMKHYTBIX KOAKCHA/IbHBIX COBOCHHBIX CIHpAJiei, BLITATHBAIOTCA B OCEBOM HAIPAaBJCHHH B BepxHell
YaCTH KOJILLEBOro KaHajia. DTO BhI3LIBAET YBEIHYEHHE MAXCHMAJIBHOIO 3HAYECHHS JOKAJIbHOrO koaddn-
LMEHTa TEIUIOOOMEHA, 4TO, ECTECTBEHHO, BENCT K YBEJIHYCHHIO CyMMapHOIo Tewioo0MeHa o cpaBHe-
HHIO C TEM, KOTOpOE HabJioAaeTCs NPH ABYMEPHOM OIHOSYEHCTOM TeYeHHH,
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